

Samsung Medical Center Sungkyunkwan University School of Medicine

IVUS: Postintervention

Joo-Yong Hahn, MD/PhD

Heart Vascular Stoke Institute, Samsung Medical Center Sungkyunkwan University School of Medicine

Disclosure

- Grant support
 - Korean Society of Interventional Cardiology
 - National Strategic Coordinating Center for Clinical Research
 - Sungkyunkwan University Foundation for Corporate Collaboration
 - Abbott Vascular, Boston Scientific, Biotronik, Biometrics, and Medtronic
- Consulting Fees/Honoraria
 - Abbott Vascular, Astra Zeneca, Biotronik, Biometrics, Daiichi Sankyo, Pfizer, and Sanofi-Aventis

Contents

Stent expansion

Full lesion coverage

> Assessment of acute problems

- Dissection
- Inadequate stent apposition
- Longitudinal stent deformation

Contents

Stent expansion

Full lesion coverage

> Assessment of acute problems

- Dissection
- Inadequate stent apposition
- Longitudinal stent deformation

Mechanism of in-stent restenosis (ISR)

Stent underexpansionNeointimal hyperplasia

Independent predictors of ISR

990 lesions treated by SES, ZES, and EES

Variable	Odds Ratio	95% CI	P-value
Univariable analysis			
Diabetes mellitus	0.981	0.449-2.144	0.002
Smoker	2.241	0.997-5.037	0.051
Multi-vessel disease	0.608	0.297-1.248	0.608
intravascular ultrasound-minimal stent area, post-	0.710	0.569-0.887	0.002
intervention intravascular ultrasound-minimal vessel area, post-	0.929	0.853-1.013	0.095
Reference vessel diameter, pre-intervention	0.404	0. <mark>180-0</mark> .907	0.028
In-stent minimal lumen diameter, post-intervention	0.535	0.268-1.065	0.075
Multivariable analysis			
intravascular ultrasound-minimal stent area, post-	0.722	0.581 <mark>-</mark> 0.897	0.003
intervention			

Song HG et al. Catheter Cardiovasc Interv. 2014;83:873-8.

Cutoff value for angiographic restenosis in 1st generation DES

PES

Hong MK et al. Eur Heart J 2006.

Doi H et al. J Am Coll Cardiol Intv 2009.

Cutoff value for angiographic restenosis in the 2nd generation DES

Song HG et al. Catheter Cardiovasc Interv. 2014;83:873-8.

Left main lesions

403 patients with SES

Kang SJ et al. Circ Cardiovasc Interv. 2011.

Bifurcation lesions

Main vessel pullback

2471 1746 Frame Frame 8.2 mm, 1 mm/div P:0.5 8.2 mm. 1 mm/div P:0.5 LAD n

Side branch pullback

Hahn JY et al. J Am Coll Cardiol 2009.

Cut off value for stent patency

73 bifurcation lesions treated with TAP technique

Hahn JY et al. J Am Coll Cardiol 2009.

Contents

Stent expansion

Full lesion coverage

> Assessment of acute problems

- Dissection
- Inadequate stent apposition
- Longitudinal stent deformation

Lessons from the SIRIUS trial

Table 2. Results of Quantitative Coronary Angiography.*									
Variable	In-	Stent Zone		In-Segment Zone					
	Sirolimus Stent	Standard Stent	P Value	Sirolimus Stent	Standard Stent	P Value			
Minimal luminal diameter (mm) Before procedure After procedure At 240 days	0.98±0.40 2.67±0.40 2.50±0.58	0.97±0.38 2.68±0.42 1.69±0.79	0.68 0.98 <0.001	0.99 ± 0.40 2.38 \pm 0.45 2.15 \pm 0.61	0.97±0.38 2.40±0.46 1.60±0.72	0.68 0.63 <0.001			
Stenosis (% of luminal diameter) Before procedure After procedure At 240 days	65.1±12.6 5.4±8.2 10.4±16.5	65.6±12.1 6.0±7.9 40.1±25.3	0.46 0.22 <0.001	65.1±12.6 16.1±9.7 23.6±16.4	65.6±12.1 16.2±8.5 43.2±22.4	0.46 0.80 <0.001			
Late luminal loss (mm)†	0.17±0.45	1.00 ± 0.70	< 0.001	0.24±0.47	0.81±0.67	< 0.001			
Restenosis (% of patients)‡	3.2	35.4	< 0.001	8.9	36.3	< 0.001			

➤ Late lumen loss

- In-segment zone > in-stent zone
- Restenosis rate:
 - proximal margin > the distal margin or the body of the stent.

Predictors of edge restenosis

SES

Comparison of Diagnostic Value of IVUS Parameters to Predict Margin Restenosis

Circ J 2010; 74: 1609 – 1616

Cutoff value of plaque burden for ISR

в

Sensitivity

100

80

60

40

20

0

0

ZES-R

ZES

Plaque burden 56.3% Sensitivity 67% Specificity 86% Plaque burden 57.3% Sensitivity 80% Specificity 87%

AUC 0.811

40

20

95% CI 0.77-0.85

100-Specificity

60

100

80

EES

Plaque burden 54.2% Sensitivity 86% Specificity 80%

Kang SJ et al. Am J Cardiol 2013.

S Poststenting angiographic DS and plaque burden

(A) Of 785 normal-looking proximal reference segments with poststenting angiographic DS <20%, 290 (37%) had reference segment maximal plaque burden >50%. (B) Of 724 distal reference segments with DS <20%, 153 (21%) had plaque burden >50%.

Stent length: predictor of ISR

Hong MK et al. Eur Heart J 2006.

TABLE 4. Clinical, Procedural, and Angiographic Multivariate Predictors of In-Segment Restenosis After SES Restenosis*

	OR	95% CI	р
Treatment of in-stent restenosis	4.16	1.63-11.01	< 0.01
Ostial location	4.84	1.81-12.07	< 0.01
Diabetes mellitus	2.63	1.14-6.31	0.02
Total stented length (per 10-mm increase)	1.42	1.21-1.68	< 0.01
Reference diameter (per 1.0-mm increase)	0.46	0.24-0.87	0.03
Left anterior descending artery	0.30	0.10-0.69	< 0.01

Circulation. 2004;109:1366-1370.

Stent length: predictor of stent thrombosis

Thrombosis rate (%)

Stented length (mm)

Contents

Stent expansion

Full lesion coverage

> Assessment of acute problems

- Dissection, hematoma, thrombus, etc.
- Inadequate stent apposition (ISA)
- Longitudinal stent deformation

Acute problems

Edge dissection

ISA

Hematoma

Thrombi or tissue prolapse

Catheter-Based Cardiovascular Interventions, Chapter 19

Classification of ISA

Cardiovasc Revasc Med. 2009;10:236-46

S late-acquired stent malapposition in DES vs. BMS

Eur Heart J. 2010 May;31(10):1172-80

² Late stent thrombosis (ST) and late stent malapposition (LSM)

Study	Design	Clinical follow-up (months)	Type of stent	LSM	Patients number	Observed valu Late ST (≤12 months)	es for (very) late ST Very late ST (>12 months)	Expected values for (very) late ST
Hoffmann et al. ³⁹	RCT	48	SES+BMS	Yes No	57 268	0 0	1 0	0.18 0.82
Tanabe et al. ³³	RCT	12	PES+BMS	Yes No	46 423	0	NA NA	0.20 1.80
Hong et al. ⁴⁰	OS	36	SES+PES	Yes No	82 475	NA NA	1 2	0.44 2.56
Siqueira et al. ³⁸	OS	29 ^a	SES+PES	Yes NO	10 172	0 0	2 0	0.11 1.89
Weissman et al. ³⁷	RCT	24	PES+BMS	Yes NO	33 514	0 1	0 0	0.06 0.94

Late stent thrombosis (ST) and late stent malapposition (LSM)

Study	Design	Clinical follow-up (months)	Type of stent	LSM	Patients number	Observed valu Late ST (≤12 months)	es for (very) late ST Very late ST (>12 months)	Expected values for (very) late ST	
Hoffmann et al. ³⁹	RCT	48 the ri	ses+BMS sk of (ve	Yes ery)	57 late ST in	patients	1 S	0.18 0.82	
Tanabe et al. ³³ Hong et al. ⁴⁰	RCT OS	¹² those ³⁶ 1.34-	Nith LSIVI was higher compared with hose without LSM (OR = 6.51 , CI 95% 1.34–34.91, P = 0.02)						
Siqueira <i>et al</i> . ³⁸	OS	29 ^a	SES+PES	Yes NO	10 172	0 0	2 0	0.11 1.89	
Weissman et al. ³⁷	RCT	24	PES+BMS	Yes NO	33 514	0 1	0 0	0.06 0.94	

Longitudinal stent deformation: Case

Incidence: 2.1 (95% CI: 0.8-4.3) per 1,000 lesions treated with PtCr-EES

Clinical Events at 12 Months

S

S

U

R

E

> Adequate stent expansion is still important in the DES era.

- Full lesion coverage with sufficient rather not excessive length of stents may reduce edge restenosis.
- Postinterventional IVUS can identify several acute problems related stents such as dissection, thrombi, or ISA.
- Late aquired ISA seems to be associated with late and very late ST.

Samsung Medical Center Sungkyunkwan University School of Medicine

경청해 주셔서 감사합니다. Thank you for your attention.